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A COVARIANT DERIVATION OF THE PONDEROMOTIVE FORCE

I. Introduction

The concept of a ponderomotive force has proven to be very useful both

for investigating parametric instabilities -3 and also for use in free

electron lasers. 4-8 The basic idea is that to lowest order, the wave gives

rise to a zero average forced oscillation of the particle. To next order this

oscillation beats with itself to give a nonzero slow time scale force. In

doing calculations, it is generally very convenient not to have to follow the

fast oscillations of the particles, but only follow their slow time motion.

However the calculation of ponderomotive force for the two applications

is quite different. In the case of parametric instabilities, one exploits the

nonrelativistic motion of the electrons.9  The oscillating electric field,

E(r,t) - E(r,t)exp - int + c.c. where Q >> - produces an oscillating
at~4

velocity v and position x. (A superscript indicates a rapidly oscillating

quantity). The next order force, q(v x B + x • V E) averaged over the fast

time, -1 , produces the ponderomotive force

2 SF q 2 --V (E E*).

Analogous expressions can also be derived for the case of a particle in a

uniform magnetic field. 10 "1

For the case of an unmagnetized free electron laser, the electrons are

highly relativistic, but one instead exploits the one-dimensional nature of

the equilibrium. Since quantities vary only in the z-direction, the particle

canonical momentum is conserved, so that the mechanical momentum in the xy

plane is given by
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P1 (z,t) -q A1 (zt). (2)

Note that A is the vector potential for both the wiggler and radiation

fields. If the radiation field has TE polarization so that Ez -0, then the
P I

force on the particle in the z-direction is -x B so that
my

dp 2 2
z _q a A2. (3)d- A. (3

The slow time scale part of the force then comes from taking the slow time

scale part of the right hand side of Eq. (3). This generally arises from the

beating of the radiation at (w,k) with the wiggler, at k . The reason this

force is slow time scale is that the particle velocity is nearly equal to

w/(k+k ).

The purpose of this paper is to extend the concept of a ponderomotive

force to a fully three dimensional force field and relativistic particles. As

such, the principal application envisioned is toward free electron lasers in p
which both the radiation field and wiggler field vary in the transverse

plane 12 - 19 Therefore, for the magnetized case, we do not consider the Larmor

motion of the electrons, but assume each electron has a zero or small magnetic

moment. The usual approach is to assume the perturbed motion in the wiggler

and radiation field is one dimensional, even though motion in the wiggler

itself can be two dimensional.

The scheme we use is particularly simple and it exploits the covariant

nature of the equations of motion. The basic approximation is that along its

unperturbed motion, the particle sees only a single frequency plus an

additional slow time dependence. Notice that a single eikonal is not

2
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required; in fact for a free electron laser, there are two separate eikonals,

the wiggler and radiation fields which have very different frequencies in the ...

lab frame, but nearly the same frequency in the beam frame. By using the

covariant equations of motion, we will see that one can write out a simple,

self-contained derivation of the ponderomotive force which is quite similar to

that in a nonrelativistic system. The ponderomotive potential is always very

easy to evaluate because it is a Lorentz scalar, and as such can be evaluated

in any convenient reference frame. We evaluate it in the reference frame of

the ponderomotive wave (vp - w/(k+k)) in which the electrons have very low

velocity.

An alternative scheme based on Hamiltonians and Lie transforms has also

been proposed.20  This scheme is more general in that it includes the Larmor

motion. However it also seems to be considerably more complicated than that

developed here. Currently this Lie transform scheme is formulated only for a

single eikonal, although the extension to more than one eikonal appears to be

straightforward.

Section Il derives the ponderomotive force for the case of an

unmagnetized system. Section III derives the ponderomotive force for a

uniformly magnetized system, and Section IV gives specific expressions for the

ponderomotive force in the more familiar three space notation for both

unmagnetized and magnetized systems. In order to make the paper more self-

contained, the four vector notation (from Panofsky and Phillips21 ) is reviewed

in the appendix.

3
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II. The Ponderomotive Force in an Unmagnetized Plasma

Here we use the notation of covariant (lower index) and contravariant

(upper index) vectors and tensors as developed in Panofsky and Phillips.
2 1

The convention for raising and lowering indices is to take a dot product with

the metric

Bi - gii B , B- g gi B1  (4)

with analogous rules for tensors. Note also that a dot product can only be

taken between covariant and contravariant indices. The metric is given by

11 9 122 9 33 -944 " - 22 9 33 = 44 (5)

and gij - g1 J - 0 for i * J. Also, 4 denotes the time index. Additional

details concerning the notation appear in the appendix.

1 2 dxi
Then the four momentum is given by p - mc T where the Lorentz scalar

ds is the line element dxi dxi, that is the speed of light multiplied by the

I 2 dxi
proper time. The four momemtum and velocity are given by p - me and

i i
dx I/do u The particle equation of motion is given by

dpi lp
dp qF ij u (6)

where FiJ is the field tensor (see the appendix). 0

Since there is no ambient magnetic or electric field, all fields are

fluctuating quantities, and any rapidly varying fluctuating quantity will be

denoted henceforth with a superscript tilda (so Fil - pil). The basic

assumption in the derivation of the ponderomotive force is that in the rest

4
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frame of the particle, there is a single, fast time dependence, exp -int.

Notice that this is more general than an eikonal assumption, as there can be

more than one eikonal. For instance in a free electron laser, there are two

eikonals, the wiggler field and the radiation field. In the lab frame, their

frequencies are very different. However in the electron or ponderomotive wave

frame, the frequencies are very nearly the same, so that the use of a

ponderomotive force is justified.

In calculating the ponderomotive force here, we do not necessarily use

the rest frame of the electrons, but can use any convenient frame in which the

electrons are nonrelativistic. However this will cause errors of order v/c

where v is the electron velocity in the frame in which it is nonrelativistic.

If a distribution of electrons is nonrelativistic and has velocity spread 6v,

it is a simple matter to Lorentz transform to some reference frame where the

center electron has energy Ymc2 and show that for the Lorentz transformed

distribution, 6y/y - dv/c. Thus, as long as 6Y/Y << 1, which is nearly always

true for a low v/Y beam, there will be a reference frame in which all

electrons are nonrelativistic. Therefore a single ponderomotive force,

correct to order dv/c, will apply for all electrons in the distribution. We

consider the ponderomotive wave frame as the frame in which all electrons

have v/c << 1. Therefore the force will not depend on electron velocity

(correct to 6v/c), and will be the same for all electrons in the beam.

To lowest order in rapidly varying quantities, the equation of motion is

dd- iq Fiu + c.c. (7)

and the unperturbed orbit is 0

5
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dxt ui  i +us(8
dx = constant, x (s) x + u . (8)

Using the unperturbed orbit on the right-hand side of Eq. (7), and assuming

that following the unperturbed orbit, the force is characterized by a single

high frequency, the first order motion is
S

U W me2(-iI) (x,t)u exp -iKs + c.c. (9)

where K characterizes the single high frequency the particle sees on its

unperturbed orbit and K << 3/3x. The quantity K is a Lorentz scalar because

it multiplies the scalar quantity s to give a scalar phase. In the particle

rest frame it is the high frequency divided by the speed of light Q/c. The

i i i .4particle displacement is given by x (s) = 0 + u s + x , where

x -i K~i ux _-- + c.c. (10)

Using the first order orbit in 9 (x ), expanding to first order in X and
i i i

using the fact that correct to this order, x + u s - x , we find0

2dui ii xk F uj> (11)
d . < q j +q -

where the average is taken over the rapid s variation (that is space scales of

order K71 ). Since we have used complex notation for the forces, this fast

time scale average, of say u F, is simply achieved by taking u F + u

By using Haxwell's equation (Eq. 42) and the rule for raising and

lowering indices,

30 il im(3k 3F mk-9- 9 + (12.)t+
ax ax 3

6
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To start, examine the - term. Anticipating our final result, that the otherax1

terms are small corrections, the slow time scale term on the right-hand side

is

2 dui il Jm -*k a k a *me - -qg9 g Ix -,F -kU ,F m
ax1  iik x1  -

However, using Eqs. (9) and (10) for x , we see that this term becomes

2 dui . q 2 (K72 gkr *p u 
ds c2 ax gkr*P kU,d- --- "-(K r pk '(3

where we have made use of the fact that giJ is symmetric Fi is antisymmetric

and have redefined summed over indices where appropriate. The above force is

of course slow time scale because F multiplies its complex conjugate.

Notice that the quantity in the parenthesis is a Lorentz scalar. This

leads to a tremendous simplification, because this quantity can now be

evaluated in any reference frame and the result will be valid in all reference

frames. Specifically, it can be evaluated in the rest frame of the

ponderomotive wave (correct to order 8v/c). In this frame, only the time-like

components of up are nonzero. The 4 vector force itself is the 4 gradient of

this scalar quantity.

We now conclude this section by showing that the correction terms are

small. Denoting the correction term by Pc, we see _•

01  i ~, 3 k i jm 3Fkl (4
PC a q(J u J - K- --g a -- u . (14)

x0

Using the fact that u m  V - iKl + 0 6v/c, it is not difficult to show
x k

7



0

that this term vanishes to order 6v/c. In doing so, one makes use again of

the fact that 9 is antisymmetric.

III. The Ponderomotive Force in a Uniformly Magnetized Plasma

In a uniformly magnetized plasma, F11 * 0. However we simplify the

problem by neglecting the unperturbed Larmor motion of the particles, so

F1ij u - 0. This is usually a very good approximation in a free electron

laser, particularly if the wiggler field is turned on adiabatically so that u

(magnetic moment) is conserved. The equation of motion for the fluctuating

particle four velocity is then

-i
mc - q Fi j u qF'J u" (15)

Assuming again that the perturbed force, evaluated along the unperturbed orbit

is proportional to exp - iKs, we find that Eq. (15) becomes

[_ mc2 ijgii - q Fiji Gi 1  
mq . tij* (16)

Therefore

u q(G k)-I iJ u, (17)

where we note that the inverse of a contravariant tensor is a covariant

tensor. Also, as before,

- Uk.
xk " iK" (18)

To next order, the slow time scale equation is

8
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mc a- -q Fl  uj q q[uj x* -- Ul i -2d1- j-~u .* k~ + uj c.c.] (19)
9x

As in the previous section, we use Maxwell's equation to rewrite -- As was

the case there, the term cancels, to order Sv/c against the term. What
a x

is left is

d i  aFm

2 du - ij - kp jm mk> (20)
mc - q F uj q- , x~, g -> (20)

- q2 u (iK)-I(G*Pr)-l p*rs u i- + c.c.

a a

Notice that except for the -s.' everything else is a scalar product. However
TXi

as it is written, the L is not outside of a Lorentz scalar, but somewhere in
ax 1

between a collection of vector and tensor products. The next step is to show
a0

that the -L can be taken out so that the force becomes the four gradient of aax1
Lorentz scalar.

Since every index except - in Eq. (20) is part of a scalar product, all

the scalar products can be evaluated in the rest or ponderomotive wave

frame. Then

+0j-,*

+ 0 -cB0  0 0

F -
j  cBo  0 0 0 9

0 0 0 0 (21)

0 0 0 0

9



and j

-mc21K qcB o  0 0

(G*j)- 222 242 -qcB o  -mc21K 0 0
2~2. 222 2 C22q c B 0 meK

0

-mc2 1K

q2c2B -m2c 4 K2

0 0 0 0

mc 1K

(22)

Observe that G- 1 has a resonance at the cyclotron frequency. For frequencies

near the cyclotron frequency, the orbit is unstable.2 2 The theory here is

valid only for stable orbits sufficiently far from cyclotron resonance. Since

the pump field is always much larger than the radiation field, a rough

criterion is that the oscillation about the parallel center velocity in the

pump field be small enough that cyclotron resonance is not achieved at any

point in the oscillation. Notice that (iK)-l(G*pr)-l is Hermitian so

(iK)-l(G*pr)- i - - (iK)-l(GrP)-i . (23)

Now, redefining indices of summation in the complex conjugate, we see that

Eq. (20) becomes

*c2 du- q ph u q2 (iK) -(G*pr)-l t*rs u6  aP J

10



( *sr

+ q (-iK)(G)- uj -(F us). (24)

Using Eq. (23) and the fact that u and G are both independent of xi, the two

terms on the right-hand side of Eq. (24) can be combined to give the final

result
0

2dui i 2 - *prpl -pj *rsmc - q F uj -- q --- ((iK)-(G) F FP)- us). (25)

Again the four force is the four gradient of a Lorentz scalar. Furthermore,

as in the previous section, the evaluation of the Lorentz scalar can be

enormously simplified by taking all scalar products in the rest frame.

IV. Examples of Calculations of the Ponderomotive Forcej

In this section we give two examples of calculations of the ponderomotive

force. Say that in the lab, a beam is traveling in the z-direction. A

quantity with no subscript denotes the lab frame. Here there is a wiggler

field with wave number kw and some transverse spatial dependence, and a

radiation field with (w,k), where k is in the z-direction. The fields in the

ponderomotive wave frame can be obtained by Lorentz transformation (we use

ponderomotive frame instead of electron rest frame so that the force will not

be velocity dependent):

E -YV x yV x B(r)exp -ikz + c.c. (26)
-wp -p - -p -W

and

V V
E -y(l -!)Er . y(l -1) E(r) exp i(kz-wt) + c.c. (27)

pc r -Z c -

11
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assuming that the radiation is polarized in the x-direction and has the

magnetic field in the y-direction and travels in the positive z-direction.

Neither the pump nor wiggler has a z component of electric field, although one

could easily be included. To evaluate the scalar products in Eq. (13), it is

simplest to do so in the ponderomotive wave frame. Here, only the time like 6

components of u come to play; the spacelike components are smaller by 6v/c.

Since the spacelike components of u are negligible, only the electric part of

F contributes to the scalar product in the beam frame. In this case, we find

K72 gkr *p u j -- P P. (28)
r P K

As is usually the case in a free electron laser, the wiggler field is much

larger than the radiation field. Therefore in evaluating Eq. (28), we retain

only terms linear in E . Then, the expression for the force (in the more-r

familiar three space notation) becomes

d -1 q2 y2 )mv - - 7 - w~ 2L(VP x Bv) • (v P x B w)
dt vuj m(k V pY) 2 '

V

+ a1- E-)(V x B~) E + E *(V x B) (29)

d -r

where we have used the fact that - -a-. For the case of a rotating
ds cd

quadrupole wiggler, Eq. (29) reduces to the form used in Refs. 17 and 18 • It

is a general expression for the slow time scale force on an electron in a

arbitrary (but unmagnetized) wiggler and radiation field correct to order

8y/y where Sy is the change in y between the electron velocity and

ponderomotive wave phase velocity, V. M w/k+k . The first term in Eq. (29) is

12



'4 0

the ponderomotive force from the wiggler alone. Its spatial dependence is

determined only by the slow space dependence of the wiggler. The second two

terms are the interaction between the wiggler and radiation field. It has a

slow axial spatial and temporal dependence like exp i[(k+k )z-wt] multiplied
w]

by any additional slow spatial and temporal dependences of E and B . The

exponential factor is a slow space and time dependence because the particle is

moving with a velocity nearly equal to w/kw+k.

We now turn to the case of the uniformly magnetized plasma. For the case

of no pump or radiation field in the z-direction, the Lorentz scalar on the S

right-hand side of Eq. (25) can easily be evaluated in the ponderomotive wave

frame. The result is

(iK)-l(*pr)-l pJ l*rs uu =

1 2 ic Boq

V( Exp yp yp K d xp yp Eyp Exp (

where D - m2c4K2 - q2c2B2 o. Using the fact that K - yk V /c and Eqs. (26) and
w p

(27) for E and E one can determine the ponderomotive force in terms of lab-w -rp
frame expressions for wiggler and radiation fields. Inclusion of B and E

--wz -rz

is also very straightforward. As before, the force is a slow time scale

force, and all of the fast oscillation is averaged out. S

V. Conclusions

We have calculated the ponderomotive force for relativistic, unmagnetized 0

or uniformly magnetized particles. The use of a covariant formulation greatly

simplifies the evaluation of this force because all scalar products can be

evaluated in a reference frame in which the electrons are nonrelativistic. _

13



Although the application envisioned is for free electron lasers, there

undoubtedly are other applications as well.

Although the immediate application is individual particle dynamics, the

use of a ponderomotive force also greatly simplifies calculation of collective

effects. For instance in the Raman regime free electron laser one needs first

a beam equilibrium in the wiggler field. Since the exact wiggler field . S

depends on r,e and z, this would be very difficult to calculate. However by

averaging over the fast oscillation, the wiggler ponderomotive potential might

depend on many fewer variables. In the case of Refs. 17 and 18, the rotating

quadrupole wiggler, the wiggler field itself depends on r and 9-kz, whereas

the ponderomotive wiggler potential depends only on r. Thus the use of a

ponderomotive force could also greatly simplify the calculation of collective P

effects in multidimensional free electron lasers. This will be explored in a

future work.

Acknowledgment

This work was supported by the Office of Naval Research.

14

P



Appendix

Here we review the four vector formalism as given in Ref. 20. A contra-

variant (upper index) vector has transformation properties 
0

x - x 1 (31)

where

y 0 0 -OY.

Q 1 0 1 0 0 (32)

0 0 1 0

-By 0 0 y

The covariant (lower index) vector has the transformation property

AA (Qj*) 1 A. (33)

Note that taking the inverse of a contravariant matrix interchanges covariant

and contravariant indices. Similarly tensors transform as

T'kl Q 1 T j (34)

with analogous expressions for covariant or mixed tensors. Any covariant

vector can be associated with a contravariant vector by

Bi " g Di (35)

and the inverse relation can be defined by using the definition (gij) -1 =

15



IL5a

glJ. The four gradient of any Lorentz scalar with a contravariant distance is

a covariant vector and visa versa, so

3Tx Q (36)

The contravariant field tensor is S

+

0 -cB cB~ E X

F cBZ 0 -cBs E y(37)

-cB cB1  0 E

-:E1  -E -E 0y z

The covariant and mixed field tensors are

i+

o -CB cB y -E x

F - 0 -cB1  -E y (38)

-CB y cB1  0 -Ez

AxE y Ez 0

and

is-



i

0 cBz  -cBy Ex

F 1 = -cB2  0 cBx  E (39)

cB -cBx  0 E
y

I-E x  -Ey -EZ  0.

The charge and current densities form the components of a contravariant four

vector and the inhomogeneous Maxwell's equation is

3F ij ji 
.

Fn- (40)

where

J
Ji ) ( (41)

The homogeneous Maxwell's equations are

aF + ki 0. (42)

axk  ax I

This is a third rank covariant tensor. However since Fij is antisymmetric it
0

will vanish unless i * j * k. Furthermore, permuting the indices obviously

does not change the result, so only 4 of the 64 elements of the tensor are

nontrivial and distinct.

17
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